Surface modification imparts selectivity, facilitating redox catalytic studies: quinone mediated oxygen reduction.

نویسندگان

  • Joseph Mason
  • Christopher Batchelor-McAuley
  • Richard G Compton
چکیده

Modifying a gold electrode surface with hydroxy-alkyl-thiols significantly reduces the observed rate of electron transfer. This designed and controlled decrease in electron transfer rate readily allows reversible and irreversible electrode processes to be more clearly delineated. Separation of such voltammetric responses can facilitate the direct study of redox catalytic processes, which would, under other experimental conditions be obscured. The reduction of oxygen by anthraquinone hydroxy derivatives are used as a paradigmatic example, demonstrating the importance of the hydroxyl groups in the reduction process. Specifically, the reduced form of 1,8-dihydroxy-anthraquinone is shown to be significantly more reactive towards oxygen reduction than the 1,4-dihydroxyl analogue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells.

The cytotoxic effects of many quinones are thought to be mediated through their one-electron reduction to semiquinone radicals, which subsequently enter redox cycles with molecular oxygen to produce active oxygen species and oxidative stress. The two-electron reduction of quinones to diols, mediated by DT-diaphorase (NAD(P)H: (quinone-acceptor) oxidoreductase), may therefore represent a detoxif...

متن کامل

The role of carburization temperature on the molybdenum carbide surface and their catalytic activity

The surfaces of molybdenum carbide were varied by changing the carburization temperature between 823 and 1123 K. The surfaces of the catalytic material were investigated using in-situ temperature program carburization followed by temperature program reduction and oxidation. In-situ temperature program oxidation (TPO) showed the surfaces of the catalysts contain a similar amoun...

متن کامل

An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system.

The toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an effort to distinguish between these general mechanisms of toxicity, we have examined the toxicity of five quinones to ye...

متن کامل

Activation of hepatocyte protein kinase C by redox-cycling quinones.

The effects of quinone-generated active oxygen species on rat hepatocyte protein kinase C were investigated. The specific activity of cytosolic protein kinase C was increased 2-3-fold in hepatocytes incubated with the redox-cycling quinones, menadione, duroquinone or 2,3-dimethoxy-1,4-naphthoquinone, without alterations in particulate protein kinase C specific activity or Ca2+- and lipid-indepe...

متن کامل

The electrochemistry of quinizarin revealed through its mediated reduction of oxygen.

After 35 years the hunt for improved anthracycline antibiotics is unabated but has yet to achieve the levels of clinical success desired. Electrochemical techniques provide a large amount of kinetic and thermodynamic information, but the use of such procedures is hindered by issues of sensitivity and selectivity. This work demonstrates how by harnessing the mechanism of catalytic reduction of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 21  شماره 

صفحات  -

تاریخ انتشار 2013